Soil fertility, heterogeneity, and microbes: towards an integrated understanding of grassland structure and dynamics

ثبت نشده
چکیده

Objective: To highlight the need and the potential for an integrated understanding of three key soil-based drivers of plant community structure and dynamics – soil fertility, soil heterogeneity, and microbes. Location: European and North American grasslands. Methods: Review and discussion of conceptual models and empirical literature, including examples of observational and manipulative studies from both natural and restored grassland communities. Results and Conclusions: In general, the results of empirical studies on soil fertility, soil heterogeneity, and soil microbes in grassland communities do not support expectations of common conceptual models. Ecological theory assumes a unimodal relationship between soil fertility and plant community diversity, yet empirical relationships from grassland communities are variable, the mechanisms underlying these variable patterns are not yet well understood, and there is mixed success at manipulating soil fertility to facilitate restorations. While theory predicts that increased soil heterogeneity will lead to increased plant community diversity, results of experimental manipulations of soil heterogeneity often show the opposite. Of two major conceptual models proposed for how microbes structure plant communities, there is little support for the hypothesis of microbially mediated niche partitioning. Plant-microbe feedbacks do have significant empirical support to date and there is increasing application of positive feedback dynamics in restoration, yet field tests of feedback dynamics remain limited. We suggest that an understanding of interactions between these soil drivers may help to resolve discrepancies between conceptual models and empirical results, improving our understanding of grasslands and our ability to restore them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Love-Type Waves in Orthotropic Layer Under the Influence of Heterogeneity and Corrugation

The present problem deals with the propagation of Love-type surface waves in a bedded structure comprises of an inhomogeneous orthotropic layer and an elastic half-space. The upper boundary and the interface between two media are considered to be corrugated. An analytical method (separation of variables) is adapted to solve the second order PDEs, which governs the equations of motion. Equations...

متن کامل

Controls on soil carbon sequestration and dynamics: lessons from land-use change.

Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our re...

متن کامل

Agrogeology: An interdisciplinary approach to serve agricultural development

Agrogeology is a relatively new applied, problem-solving, interdisciplinary earth and agricultural science that aims at improving agricultural production using agromineral resources. There are two aspects of agrogeology: 1. The influence of parent material on soil development and soil fertility, and 2. The beneficial application of rocks and minerals to enhance soil fertility and crop productiv...

متن کامل

Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration.

Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative (13)C nuclear magnetic resonance (NMR) spectr...

متن کامل

Positive climate feedbacks of soil microbial communities in a semi-arid grassland.

Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate-carbon feedbacks. However, detecting microbial feedbacks to elevated CO(2) (eCO(2) ) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009